Home | About Us | Grants | Resources | News & Events | Community

Vision: We may not be there yet, but we are closer than we were yesterday.
Link to Donation Page

detail
Home

About Us
arrowMission
arrowHistory & Background
arrowDisclaimer

Grants
arrowGrant Opportunities
arrowGrant Process
arrowASN Co-Grants
arrowAdvisors
arrow2015 Grant Recipient
arrow
2013 Grant Recipient
arrow
Translational Research

Resources
arrowPatient Registries
arrowPartners
arrowMedical Experts
arrowDefinitions
arrowBio Banks

News & Events
arrow2017 MN Conference in Bergamo
arrow
HFE Gene Linked to MN
arrowCureGN Study at Columbia
arrow
Protein Linked to Kidney Failure arrow
arrowNIH Renews NEPTUNE Funding
arrow
Childhood Stress not trigger for MS
arrowLevin succeeds Remuzzi at ISN

arrowSalant receives Hamburger Award
arrowDrug for MS & Alzheimer's
arrowNeurons & Salt
arrowAutoimmune-Allergy Connection
arrowA Cause of Recurrent MN
arrowBlood Test Detects Kidney Rejection
arrow
Genotyping of Risk Alleles
arrowLink to Gene Variants

arrowBlood Test to Detect MN
arrowMN, an Autoimmune Disease
arrowKey Molecule Impacts Mice
arrowLa Jolla Institute
arrowGluten Specific T-cells
arrowHuman Gene Pool
arrowVitamin D & Clinical Outcomes
arrowBovine Serum Albumen
arrow
Variations in HLA-DQA1 & PLA2R1 regions
arrowKlotho and Kidney Disease
arrowLink between MN and Milk (NEJM)

arrowASN News Release
arrowMario Negri News Release

arrowHyper-IgG4 Syndrome News Release
arrowAdvances in Kidney Disease (RSS)
arrowKidney Disease News (RSS)
arrowNew Patents (RSS)
arrowScience Daily (RSS)
arrowUpcoming Events
arrowEvents Archive

Community
arrowLinks
arrowPublic Service Announcement
arrowOutreach




 

Gluten-Specific T Cells Cross-React between HLA-DQ8 and the HLA-DQ2α/DQ8β Transdimer

November 11, 2011 -- Because susceptibility to celiac disease is associated strongly with HLA-DQ2 (DQA1*05/DQB1*02) and weakly with HLA-DQ8 (DQA1*03/DQB1*03), a subset of patients carries both HLA-DQ2 and HLA-DQ8. As a result, these patients may express two types of mixed HLA-DQ2/8 transdimers (encoded by DQA1*05/DQB1*03 and DQA1*03/DQB1*02) in addition to HLA-DQ2 and HLA-DQ8. Using T cells from a celiac disease patient expressing HLA-DQ8trans (encoded by DQA*0501/DQB*0302), but neither HLA-DQ2 nor HLA-DQ8, we demonstrate that this transdimer is expressed on the cell surface and can present multiple gluten peptides to T cell clones isolated from the duodenum of this patient. Furthermore, T cell clones derived from this patient and HLA-DQ2/8 heterozygous celiac disease patients respond to gluten peptides presented by HLA-DQ8trans, as well as HLA-DQ8, in a similar fashion. Finally, one gluten peptide is recognized better when presented by HLA-DQ8trans, which correlates with preferential binding of this peptide to HLA-DQ8trans. These results implicate HLA-DQ8trans in celiac disease pathogenesis and demonstrate extensive T cell cross-reactivity between HLA-DQ8 and HLA-DQ8trans. Because type 1 diabetes is strongly associated with the presence of HLA-DQ8trans, our findings may bear relevance to this disease as well.

Source: The Journal of Immunology